

Kaz Erdos

Karthik Seetharaman

CS Project Proposal

11/16/20

Statement of Goals

This product does not aim to solve an existing problem, but rather to broaden the scope of
classification technology by extending it to classical music. Specifically, the main goal of the
program is to be able to identify the style of composition of an inputted piece of classical,
keyboard music. This will be done through the use of machine learning, where the computer
learns the characteristics of different periods of classical keyboard music (Baroque, Classical,
Romantic, etc). Possible extensions are to identify the specific composer of a piece from a
designated list, and to mimic the composing style of a particular composer. This application is
intended for anyone with an interest in classical music, including students, teachers, composers,
performers, and so on.

Functional Description - Minimal Viable Product

The application should have the following minimal features:

1) The program should be able to classify the style of composition of an inputted piece of
classical keyboard music with reasonable accuracy. These styles include Baroque,
Classical, Romantic, Post-Romantic, Impressionistic, and Modern.

2) The program should be able to convert audio to MIDI files to condensed text (converting
audio to MIDI files to text is a necessity and can be done quite easily through the use of
online programs. However, condensing the text will require some more programming).

3) If applicable, the application should be able to classify the composer from a limited list of
composers.

4) (extension) The program should be able to produce a MIDI file that accurately mimics
the composing style of some prespecified composer (say, Bach).

Technical and Data Feasibility

In its simplest form, the application takes in MIDI files converted to text as input. This is

done through the MIDICSV convertor found at ​http://www.fourmilab.ch/webtools/midicsv/​. A
MIDI file is represented in text through a series of lines, each of which characterizes a note via
the time it is played, its volume, and its pitch. This text file will then be condensed via a standard

http://www.fourmilab.ch/webtools/midicsv/

Python program (the particular language does not matter here) and used as a piece of training
data for the application. MIDIs for various pieces of classical music can be easily found on the
internet. For example, here is a website containing many MIDIs of Bach pieces:
http://www.jsbach.net/midi/​. Future iterations of the model aim to input sound directly into the
application. Audio can be converted to MIDI using many softwares, some of which are outlined
here: ​https://www.dawsons.co.uk/blog/how-to-convert-audio-midi​.

In terms of the actual machine learning software, the application will use TensorFlow, an
open-source machine learning concept made by Google. We chose TensorFlow for its ease of
use, and also its ability to be worked on collaboratively (Google Colab). The model will be
trained with a database of condensed text files converted from MIDIs from each major period
mentioned earlier. Unfortunately, TensorFlow runs only on NVIDIA graphics cards, though we
have the required means available at home (NVIDIA GTX 1070). Once the model is trained, it
can be transferred to the internet following an example shown here which utilizes Python and
some Javascript:
https://towardsdatascience.com/how-to-deploy-tensorflow-models-to-the-web-81da150f87f7

User Interface

http://www.jsbach.net/midi/
https://www.dawsons.co.uk/blog/how-to-convert-audio-midi
https://towardsdatascience.com/how-to-deploy-tensorflow-models-to-the-web-81da150f87f7

Shown above is a simple example of the user interface. As most of the work is done
behind the scene, all that is needed for the first implementation of the project is a place to upload
the files and a place to display the results. An example result of the model is presented,
outputting “Romantic” as the genre and “Paganini” as the composer. In the future perhaps this
interface can be adapted to include smart recommendations for pieces, as well as the
aforementioned mimicry component. The website should be able to accept all 4 file formats
listed, those being MP3, MP4, WAV, and MIDI.

Below is a simple wireframe of the proposed user interface:

Flow Chart

Shown on the flowchart are the three possible locations for user input, numbered START 1-3.
The flowchart outlines how the data flows from the user into the model, as well as how the
model is trained with data. At this point in time the flowchart does not include the mimicry
extension, for obvious reasons.

Data Storage

After it is trained, the application’s classification mechanism will not require any
substantial database of data to pull from; the only data it will use is the inputted data, which will
not be stored after the program is completed. Technically, the program needs access to the list of
5-6 styles of composition as well as a small list of composers for choices of classification, but
this is an extremely small database that can be stored directly in the application. Even in the case
of mimicking a composer, the computer will be able to draw off its memory from training and
not require any data except the given input. The training data itself can be easily stored locally as
text files, as even text files representing long pieces do not take up much space. If necessary,
these files can also be moved to an online repository, such as GitHub.

Python Scripts for Downloading and Converting Data

Example CSV File (Converted from MIDI)
Before Compression:

The raw data after conversion has unnecessary information like the track name, key signature,
and markers. Phrases like “Note_on_c” are not needed for machine learning.

After Compression:

After the compression only the composer name and numerical information about the notes are
included (time, pitch, volume). This data, once partitioned, can be used for training the machine
learning model.

