Kaz Erdos

Karthik Seetharaman

CS Project Proposal

11/16/20

Statement of Goals

This product does not aim to solve an existing problem, but rather to broaden the scope of

classification technology by extending it to classical music. Specifically, the main goal of the
program is to be able to identify the style of composition of an inputted piece of classical,

keyboard music. This will be done through the use of machine learning, where the computer
learns the characteristics of different periods of classical keyboard music (Baroque, Classical,
Romantic, etc). Possible extensions are to identify the specific composer of a piece from a
designated list, and to mimic the composing style of a particular composer. This application is
intended for anyone with an interest in classical music, including students, teachers, composers,
performers, and so on.

1)

2)

3)

4)

Functional Description - Minimal Viable Product
The application should have the following minimal features:

The program should be able to classify the style of composition of an inputted piece of
classical keyboard music with reasonable accuracy. These styles include Baroque,
Classical, Romantic, Post-Romantic, Impressionistic, and Modern.

The program should be able to convert audio to MIDI files to condensed text (converting
audio to MIDI files to text is a necessity and can be done quite easily through the use of
online programs. However, condensing the text will require some more programming).

If applicable, the application should be able to classify the composer from a limited list of
COMpOSers.

(extension) The program should be able to produce a MIDI file that accurately mimics
the composing style of some prespecified composer (say, Bach).

Technical and Data Feasibility

In its simplest form, the application takes in MIDI files converted to text as input. This is

done through the MIDICSV convertor found at http://www.fourmilab.ch/webtools/midicsv/. A
MIDI file is represented in text through a series of lines, each of which characterizes a note via
the time it is played, its volume, and its pitch. This text file will then be condensed via a standard


http://www.fourmilab.ch/webtools/midicsv/

Python program (the particular language does not matter here) and used as a piece of training
data for the application. MIDIs for various pieces of classical music can be easily found on the
internet. For example, here is a website containing many MIDIs of Bach pieces:
http://www.jsbach.net/midi/. Future iterations of the model aim to input sound directly into the
application. Audio can be converted to MIDI using many softwares, some of which are outlined
here: https://www.dawsons.co.uk/blog/how-to-convert-audio-midi.

In terms of the actual machine learning software, the application will use TensorFlow, an
open-source machine learning concept made by Google. We chose TensorFlow for its ease of
use, and also its ability to be worked on collaboratively (Google Colab). The model will be
trained with a database of condensed text files converted from MIDIs from each major period
mentioned earlier. Unfortunately, TensorFlow runs only on NVIDIA graphics cards, though we
have the required means available at home (NVIDIA GTX 1070). Once the model is trained, it
can be transferred to the internet following an example shown here which utilizes Python and
some Javascript:
https://towardsdatascience.com/how-to-deploy-tensorflow-models-to-the-web-81dal50{8 77

User Interface

CLASSIFY YOUR

MUSIC

CLASSICAL-BAROQUE-ROMANTIC

AND MORE
. Upload your file Here Your piece is. .

MP3, MP4, WAV, MIDI PAGANINT

ROMANTIC


http://www.jsbach.net/midi/
https://www.dawsons.co.uk/blog/how-to-convert-audio-midi
https://towardsdatascience.com/how-to-deploy-tensorflow-models-to-the-web-81da150f87f7

Shown above is a simple example of the user interface. As most of the work is done
behind the scene, all that is needed for the first implementation of the project is a place to upload
the files and a place to display the results. An example result of the model is presented,
outputting “Romantic” as the genre and “Paganini” as the composer. In the future perhaps this
interface can be adapted to include smart recommendations for pieces, as well as the
aforementioned mimicry component. The website should be able to accept all 4 file formats
listed, those being MP3, MP4, WAV, and MIDI.

Below is a simple wireframe of the proposed user interface:



Title of application

Subtitle of application

Input audio file

Output classification




Flow Chart

Higher Level User Input Location

Online Conversion Resources
MIDI — Text File

L Online MIDI Database w

S

MP3, MP4, or WAV

A

Python Converter
Compress Text Files

'ﬁ Simplest User Input Location /

Raw Microphone
Input

TensorFlow
TensorFlow Model \ Training

Highest Level User Input Location

Output Small Local Database of
(Genre, Composer) Composers / Genres

Shown on the flowchart are the three possible locations for user input, numbered START 1-3.
The flowchart outlines how the data flows from the user into the model, as well as how the
model is trained with data. At this point in time the flowchart does not include the mimicry
extension, for obvious reasons.

Data Storage

After it is trained, the application’s classification mechanism will not require any
substantial database of data to pull from; the only data it will use is the inputted data, which will
not be stored after the program is completed. Technically, the program needs access to the list of
5-6 styles of composition as well as a small list of composers for choices of classification, but
this is an extremely small database that can be stored directly in the application. Even in the case
of mimicking a composer, the computer will be able to draw off its memory from training and
not require any data except the given input. The training data itself can be easily stored locally as
text files, as even text files representing long pieces do not take up much space. If necessary,
these files can also be moved to an online repository, such as GitHub.



Python Scripts for Downloading and Converting Data

1 selenium i 't webdriver

1 selenium.webdriver.common. keys

t Keys

. pathlib import Path
selenium.webdriver.support.ui

-t WebDriverWait
t expected conditions =as EC
't By

1 selenium.webdriver.support
1 selenium.webdriver . common.by
- time

os

chromeCptions = webdriver.ChromeCptions ()

prefs = {"download.default directory” : "C:\\Users\\Kazuya\\webscraping\\Beethoven\\MIDI="}
chromefptions.add experimental option("prefs",prefs)

chromedriver = "C:\\Users\\Kazuya\\Downloads\\chromedriver win32\\chromedriver.exe"

driver = webdriver.Chrome (executable path=chromedriver, options=chromeCptions)

scrapeWebsite():
driver.get('http://www.piano-midi.de/beech.htm'})
time.sleep(l)
elements = driver.find_elements_by_xpatht”ffa[cc::ains(@1ref, o Y™y
for %= in range (0, len (elements) ) :
if elements([x].is_displayed():
elements [X] .click()

l=f convertFiles():

arr txt = [x for x in os.listdir{'C:\\Users\\Kazuya\\webscraping\\Beethoven\\MIDIs') if x.endswith(".mid")]
print (arr_txt)
for x arr txt:

p="C:\\Users\\Kazuya\\webscraping'\Beethoven\\MIDIs\\"+x[:-4]+" .batc"

myBat = open{p, 'w+'}

c = "C:\\Users\\Kazuya\\Desktop\\midicsv-1.1\\Midicsv.exe "+x+" "+x[:-4]+".csv"
myBat.write (c)

myBat.close ()

scrapeWebsitce ()
convertFiles ()

arr txt = [x for x in os.listdir('C:\\Users\\Kazuya\\webscraping\\Bach\\MIDIs') if x.endswith({".csv")]
rint (arr_ txt)
for x in arr txt:
outputName = "COM "4x

with open(x, 'r') as inp, open(outputName, 'w', newline='"'} a=s out:
writer = csv.writer (out)
writer.writerow(name)
for row in csv.reader(inp):
if str(row[2]) = " Hote_on c":
writer.writerow((row[0],str(row[1l]}

str{row[4])[1l:], str({row[S])}[1:1}}



Example CSV File (Converted from MIDI)
Before Compression:

0 0 Header 1 17 430
1 0 Start_track

1 0 Title_t untitled

1 0 SMPTE_offset 96 0 3 0
1 0 Time_signature 3 o 24 8
1 0 Key_signature 1 major

1 0 Tempo 600000

1 0 Marker_t A

1 23040 Marker_t A

1 46080 Marker_t B

1 69120 Marker_t B

1 91680 Tempo 1250000

1 91680 End_track

2 0 Start_track

2 0 MIDI_port 0

2 0 Title_t Solo Harpsichord with 2 Manuals

2 0 Program_c 0 G

2 0 Control_c 0 T 100
2 0 Control_c 0 10 89
i 0 Mote on_c 0 67 100
2 120 Note_on_c 0 67 0
2 120 Note _on_c 0 66 100
2 240 Note_on_c 0 66 0
2 240 Note_on_c 0 T4 100
2 600 Note_on_c 0 &7 0
2 600 Note_on_c 0 62 100
2 720 Note_on_c 0 62 0
2 720 Note on_c 0 64 100
2 840 Note on_c 0 64 0
2 840 Note on_c 0 66 100
2 960 MNote on_c 0 66 0
2 960 MNote on_c 0 67 100
2 1080 Mote_on_c 0 &7 0
2 10380 Note_on_c 0 69 100
2 1200 Note_on_c 0 89 0
2 1200 Mote on_c 0 7 100

The raw data after conversion has unnecessary information like the track name, key signature,
and markers. Phrases like “Note_on_c” are not needed for machine learning.



After Compression:

bach
2 0 &7 100
2 120 67 0
2 120 66 100
2 240 66 0
2 240 67 100
2 600 67 0
2 600 52 100
2 720 62 0
2 720 64 100
2 840 64 0
2 340 66 100
2 960 66 0
2 S60 67 100
2 1080 &7 0
2 1080 69 100
2 1200 69 0
2 1200 7 100
2 1320 Fi | 0
2 1320 3 100
2 1440 73 0
2 1440 T4 100
2 1560 74 0
2 1560 T3 100
2 1630 73 0
2 1680 T4 100
2 2040 74 0
2 2040 59 100
2 2160 69 0
2 2160 Fi | 100
2 2280 71 0
2 2280 73 100
2 2400 73 0
2 2400 T4 100
2 2520 T4 0
2 2520 76 100

After the compression only the composer name and numerical information about the notes are
included (time, pitch, volume). This data, once partitioned, can be used for training the machine
learning model.



