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1. Executive Summary

The discussion around sports is in many ways a direct reflection of their competitive nature,
with constant debate and discussion regarding the “G.O.A.T.” - the undisputed premier
athlete - for every sport which has been constructed. For practically any given sport, there
exist multiple candidates who could be considered the greatest according to diverse criteria,
representative of the many intricacies of different sports. In this paper, we develop several
models of specific sports able to pinpoint an objective G.O.A.T. based on performance results
alone. We extend and adapt our models, developed in detail for women’s singles tennis and
speedcubing, to generalized individual sports as well as team sports.

Our first model created a rating system, taking each of the 189 participants and 508
total matches in the 2018 Grand Slam tournaments for women’s singles tennis into account.
Specifically, for each matchup, the model updated a Greatness Score based on previous
ratings, the scores of the match, and the importance of the round they were playing in. We
then inputted the list of matches into the model 1000 times, shuffling each time to determine
the final greatness. Based on our model, Simona Halep was determined to be the G.O.A.T.
of 2018 Women’s Tennis.

Our second model evaluated the performance of competitors in 3x3x3 speedcubing, a sport
with an inanimate standard, over the entirety of the its formal existence. We gathered data
from the finals round of every tournament recorded in the careers of 36 notable cubers, before
deriving a formula to compare each cuber with their competitors by year in the form of an
initial Greatness Score. We implemented a function that accounts for decline in a cuber’s
ability, with additional considerations from world record solves. Our model determined the
G.O.A.T. of 3x3x3 speedcubing to be Feliks Zemdegs.

The two models can be easily translated to similar individual sports of their nature. Singles
tennis and speedcubing are matchup-dependent and standard-dependent respectively. All
individual sports can be classified into these two categories, and as such, the aspects of both
models can be translated across to sports such as boxing or swimming.

However, these two models also form excellent complements to each other, and can be
integrated together to develop a model for team sports. The two models are components of
the factors of individual and team performance, and with adjustments made for individual
player value, this new derivation of our original models can determine the G.O.A.T. of any
team sport. In this way, our models are able to be easily adapted to fit the great diversity of
the sporting world.

In a letter to the Director of Top Sport, we offered brief and easily understandable, yet
in-depth summaries of how our models function and their key findings, as well as explanations
of our models’ versatility and applicability to the universal world of sports.
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2. Introduction

Over the millennia of its existence, human civilization has come to innovate and develop a
myriad of competitive recreational activities, broadly grouped and defined as “sports”. As an
inquisitive species, we are naturally inclined to determine which individual among us is the
greatest competitor of any given sport. In the quest for the answer, we collect statistics about
the performance of athletes and teams, throw our sympathies behind our favorite competitors,
and fiercely debate with each other, in hopes to discover who is truly the greatest of all time.

There is seldom an undisputed greatest-of-all-time for any given sport, with different
criteria pointing to various individuals over the course of history and the present. With a
diverse array of tremendously intricate sports with rich histories of greatness available to us,
how can it be possible to ascertain the objectively absolute best individual? Which factors
should be considered, and which are most important? How can a model for greatness be
adapted across different sports and eras?

3. Women’s Singles Tennis, 2018

Women’s singles tennis is an individual sport in which two opponents play against one
another with the objective of winning two sets. Although the format varies by tournament, a
set is typically won after winning at least seven games by a margin of at least two games, or
winning a special tiebreak with at least seven points by a margin of at least two points.

In our first model, we determined the greatest women’s singles tennis player in 2018, based
on performance at the Australian Open, French Open, Wimbledon Championships, and U.S.
Open for that year. [10] [8] [9] [7] For each of these four tournaments, 128 players were seeded
according to rankings held by the Women’s Tennis Association (WTA) and qualification
tournaments, and played in a single-elimination bracket to decide the winner.

3.1. Assumptions.
(1) Assumption: A tennis player’s greatness is not influenced by variables unrelated to

their tennis performance.
Justification: We assumed that matchup (relative strength of opponents) and match
results alone contribute to one’s greatness, which is not affected by off-the-court
variables. It is difficult to take into account factors such as character, popular
support, or legacy for the large number of unique individuals participating in these
tournaments. Additionally, there does not exist a method to quantify these highly
subjective variables.

(2) Assumption: All tennis matches were played with intentions to win. No factors
contributed to matchup competitiveness or match results besides skill in tennis.
Justification: Relationships between opponents or other match details are too
nuanced to yield a decisive effect on the greatness of a player. There are many
examples of these: opponents from the same country, opponents related familially,
players playing in their home country, and rivalries between opponents.

(3) Assumption: Performance in the 2018 Australian Open, French Open, Wimbledon,
and U.S. Open tournaments determined a tennis player’s greatness in 2018 equally.
No other tournaments contributed to greatness.
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Justification: These four tournaments, collectively known as the Grand Slam tour-
naments, generally involve the best players in the world. Due to the high-profile
prestige of these tournaments, as well as the strength of the playing field, we assumed
that these tournaments alone would evaluate a player’s greatness. The four are
weighted with equal importance, as WTA rating points are awarded in equal amounts
at each. [6]

(4) Assumption: The pressure to win a tennis match increases based on how far into a
tournament the match occurs.
Justification: As a tournament advances, more WTA rating points are at stake.
Also, the potential for winning the tournament or placing highly for a given player,
regardless of skill, increases dramatically. The matchup competitiveness naturally
increases due to weaker players being eliminated in earlier rounds.

3.2. Variables.
The most important variable in this model is the greatness score, denoted by g. First,

each player is assigned an initial greatness score of g = 0. The model works by simulating all
matches in the four Grand Slam tournaments and updating the greatness scores of players
after each match. This is run for 1000 iterations (each tournament is simulated for 100
rounds), until a clear ranking of greatness scores is established, at which point the G.O.A.T.
is easily identifiable.

Each match in the simulation updates the greatness scores of the winner and the loser
according to the update variables, denoted by u1 and u2, respectively. The update variables
are determined by the following variables corresponding to each match:

(1) Competitiveness (m): Every matchup in a tournament has a competitiveness level,
which is determined by how close the greatness scores of the players are at the instant
before the match. If the greatness scores are close, the match is competitive and could
swing either way, resulting in a competitiveness score that is low in magnitude. If
the greatness scores are farther apart, the match is less competitive and the competi-
tiveness score is higher in magnitude. Very competitive matches do not greatly affect
greatness scores, and neither do non-competitive matches that have the expected
outcome. However, if the underdog comes out on top in a non-competitive matchup,
the underdog’s greatness score will go up more significantly and the favorite’s greatness
score will go down more significantly.

(2) Round Importance (Ri) For 1 ≤ i ≤ 7, Ri is the importance of round i of the
tournament (there are seven rounds in a Grand Slam from the first round to the final).
The G.O.A.T. should be able to perform well in high-pressure situations, and should
be able to play well in later rounds of the tournament, as these are the rounds that
people remember the most. These variables help the model account for later rounds
of the tournament being more important, so that wins in these rounds are factored
more heavily in the greatness score than wins in the earlier rounds. However, losses
in these rounds are factored less heavily than losses in the earlier rounds, as being
knocked out of the Grand Slam late in the tournament does not affect greatness as
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much as being knocked out of the tournament early on.

(3) Domination Score (d): The G.O.A.T. should be able to win decisive victories, dom-
inating their opponents on the field. The domination score quantifies how dominant
the winning player was on the field.

In order to calculate the domination score (entry 2 in the above list), we must calculate a
few auxiliary variables, which are also unique to each match:

(1) Domination Sum (s): While calculating the domination score, we keep track of a
domination sum, which is modified after every set of a match depending on which
player won that set and how decisively they won it.

(2) Tie Factor (Ti): For 1 ≤ i ≤ 3, ti is the tie factor of set i. If a set results in a 6-6 tie,
it moves to tiebreakers. If this is the case, the tie factor Ti for that set is calculated
based on how competitive the tiebreaker game was. The domination sum is then
modified accordingly.

Each match also has a few variables that come directly from the data. In what follows and
for the rest of the paper, we refer to the winner of the match as the first player:

(1) For 1 ≤ i ≤ 3, Li is 1 if the first player won the ith set of the match and 0 otherwise.
Note that L3 does not exist if a match was won in two sets. One can think of this as
a boolean variable that is true if the first player won the ith set and false otherwise.

(2) For 1 ≤ i ≤ 3, s1i is the number of games the first player won in the ith set. Once
again, s13 does not exist if the match was won in two sets. Similarly, s2i is the number
of games the second player won in the ith set.

(3) For 1 ≤ i ≤ 3. t1i is the number of points the first player won in the tiebreaker after
the ith set, if it exists. The three variables t2i, 1 ≤ i ≤ 3 are defined similarly.

3.3. Development of Model.
First, the data given in the problem, which only included results from the fourth round

onwards in all four Grand Slams, was extended to include results from all rounds in each of the
tournaments. This was done by manually inputting data from Wikipedia into a spreadsheet
which could then be inserted into a program. Collecting results from all rounds of every
tournament allowed for more comprehensive data to be used in determining the G.O.A.T.,
especially since several serious contenders for the title did not make the Fourth Round in
some of the tournaments.

As briefly elaborated on in the variables section, the model, on a high level, works by first
assigning each player an initial greatness score g = 0. Then, each Grand Slam is simulated,
with each player’s greatness score being updated after every match they play. This is run for
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1000 iterations with the match list shuffled between each iteration until a clear ranking is
established. This ranking is the final ranking of Women’s Singles players in 2018, by greatness.

There are three factors that determine how the greatness scores are changed for each match:
the domination score, the round importance, and the competitiveness. The domination score
scores how decisively a player played in a match. To calculate the domination score d, we
must first calculate the domination sum s. This is calculated using the following equation:

s =
3∑

i=1

(−1)Li+1(0.8)s1i+s2i−6Ti

To see how this equation works, consider the ith set. If Li = 1 (the first player won the set),
the domination sum is increased, and the domination sum is decreased if Li = 1. Since the
first player won the match, the domination sum will be increased exactly twice throughout
the match. Next, note that s1i + 22i − 6 ≥ 0 since at least 6 games are played in every set.
The more games are played, the less dominant the winner of that set was, so the less the
domination sum is modified (since 0.8 will have a higher exponent if more games are played).
The last component is the tie factor Ti, which is 1 if no tiebreaker is played, and thus has no
effect on the domination sum unless a tiebreaker is played. If a tiebreaker is played, we use
the following equation to calculate the tie factor:

Ti =
5

4
(0.9889)min((t1i+t2i−7),20)

This functions similarly to the (0.8)s1i+s2i−6 term, which multiplies by 0.8 for each game
played over the most dominant case (6-0). The more points are scored in the tiebreaker
(which is measured by t1i + t2i), the less dominant it was, which corresponds to the expo-
nential decay term decreasing with a larger exponent. The exponent caps at 20 so that
the tie factor does not affect the domination sum any more than a normal game in a set.
This is why the constant 0.9889 was chosen, since 20

√
0.8 ≈ 0.9889. The 5

4
multiplier is

to make sure the tiebreaker game is not overcounted, since it is counted in the total num-
ber of games as well. By dividing by 0.8, we ensure it is only accounted for inside the tie factor.

After calculating these, we calculate the final domination score for that match with the
following equation:

d = 1.5−
(

1.5

1− (0.3)3

)
(1− (0.3))2−s

The domination sum is always in the closed interval [−1, 2] since the domination sum
is changed by at most 1 at each step, and it must increase exactly twice throughout the
match (and may decrease once). Thus, 1− (0.3)2−s is in the interval [1− (0.3)3, 1], which
puts the whole sum in the range [0, 1.5]. The closer s is to 2, the higher the domination sum
is. Exponential growth was chosen so that sums closer to 2 were rewarded more than sums
closer to −1 were penalized. The constant 0.3 was chosen experimentally.
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The next factor is m, the competitiveness of the match, which is calculated as

m =
g1 − g2
50

This equation measures the competitiveness of the match by simply taking the positive
difference of the two players’ greatness scores. The bigger this difference, the less competitive
the match was. This difference is then divided by 50 for scaling, so it does not affect the
update too much.

The last factor is Ri the round importance. The round constants are defined by Ri = (1.2)i,
where i measures the round of the competition minus 1 (so the first round is 0). This makes it
so that later rounds are exponentially more important than earlier rounds, greatly increasing
their value.

After the domination sum is calculated for the match, the players’ ranks can be updated.
The winner’s rank is updated by u1 and the loser’s by u2 as described by the equations below:

u1 = 5

(
1− 1

1 + 5−m

)
1

d
Rr

u2 = −5
(

1

1 + 5m

)
1

d

1

Rr

These update variables are added to the respective player’s greatness scores before the
match, so the first player (the winner) has their greatness score increased and the second
player (the loser) has their greatness score decreased. We use a logistic model on the match
competitiveness to adjust the scores appropriately. This way, if favorite beats the underdog,
the favorite will gain less points and the underdog will lose less points while if the underdog
beats the favorite, the favorite will lose more points and the underdog will gain more points.
The more mismatched their greatness scores are, the higher the disparity in the points lost
and gained when comparing the favorite and the underdog.

Note that the logistic model is multiplied by the round constant for the winner’s update
and is divided by the round constant for the loser’s update. This makes it so that winning
a late match helps the winner a lot and hurts the loser less while winning an earlier match
helps the winner less and hurts the loser more. Finally, the logistic model is multiplied by 1

d
for both updates so that more dominant matches help the winner more and hurt the loser
more while less dominant matches help the winner less and hurt the loser less.

Lastly, the ratings are multiplied by

0.8max(0,3−t)

where t is the number of tournaments attended by a player. This is factored in because
a more active player should have a better chance of being the G.O.A.T, and a player who
missed tournaments should receive a penalty.
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These equations are used for each match to continually update the greatness scores of all

players, which eventually results in a definitive ranking after each tournament is simulated
many times (in practice, 1000 times). The greatness scores are scaled linearly so that the top
player has a greatness score of 100 and the lowest player has a greatness score of 0.

3.4. Results and Discussion.
The results showed that the greatest women’s singles tennis player in 2018, as determined by
their Grand Slam tournament results, was Simona Halep of Romania, with a scaled greatness
score g = 100.000. The model is clearly justified in this decision, as Halep ranked as world 1
for virtually the entirety of 2018, won the French Open, and was decided Player of the Year
by the Women’s Tennis Association.

Notably, the model placed the four unique winners of the Grand Slam tournaments in the
top four positions: Angelique Kerber, winner of the Wimbledon Championships, in second
(g = 99.411); Naomi Osaka, winner of the U.S. Open, in third (g = 98.880); and Caroline
Wozniacki, winner of the Australian Open, in fourth (g = 98.394).

The results did present several extremely interesting cases. Serena Williams, who missed
the Australian Open due to the recent birth of her child, fell right behind the winners of
the Grand Slam tournaments due to her excellent performances in matches for the rest of
the year (g = 97.850). Deemed the Comeback Player of the Year by the WTA, she was the
only athlete out of the top 25 tournament competitors to miss a Grand Slam tournament,
reflective of her strong performance and greatness.

Further down the list, Vitalia Diatchenko ranked 70th (g = 63.297) despite only participat-
ing as a qualifier in the Wimbledon Championships. How is this possible? If we examine her
opponents, we can see that she emerged victorious over 10th-ranked Maria Sharapova and
34th-ranked Sofia Kenin, the latter of which she beat in two sets. Having this singular run
of greatness in just one tournament both elevates her to well above average for a relative
unknown to the Grand Slam tournaments, but still restricts her to an appropriate greatness
score as determined by the model.

On the opposite end of the spectrum, we find Polona Hercog, who is ranked 187th out
of 189 total players (g = 2.415). She lost in straight sets in 3 out of 4 tournaments, often
beaten by players ranked as below-average by the model. This explains why her greatness
score is continuously pushed downwards, despite her having won more total games compared
to players like Diatchenko.

Figures 1 and 2 show the top 24 and 25th to 75th ranked Women’s Singles tennins players,
respectively.

3.5. Additional Analysis of the Model.
When trying to incorporate seeds into the initial values of each player’s ratings we found

almost no change in the results at all. Even randomizing the initial values to be between
-1000 and 1000 gave final greatness scores to have differences almost exactly the same as the
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original. This shows that the model is completely based on the games played that year, and
the initial ratings of players will have essentially no effect on the final result.

Figure 1. The top 24 players had greatness score ranges from 100.000 to 92.422.
Green represents players who participated in four Grand Slam tournaments.
Blue represents players who participated in three.

4. Speedcubing

4.1. Assumptions.
(1) Assumption: A cuber’s greatness is not influenced by variables unrelated to their

performance.

Justification: A cuber’s performance should be restricted to their solving times
only. There is far too much data to consider if, for example, individual moments
that sparked popularity were considered. Additionally, greatness determined from
popularity factors is largely subjective, and very difficult to model mathematically. It
is difficult to take into account factors such as character or legacy which may influence
the perception of a cuber’s greatness. Additionally, there does not exist a method to
quantify these variables. For the initial model, these factors cannot be considered.

(2) Assumption: A cuber’s performance is not influenced by variances in the competi-
tion environment.

Justification: It is impossible to gauge the influence of such external variables
on solving times. With cubing, there are many such details which vary drastically
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Figure 2. The next 50 players had greatness score ranges from 91.959 to 57.730.
Green represents players who participated in four Grand Slam tournaments.
Blue represents players who participated in three, yellow for two, red for one.

based on the tournament. Location, amount of spectators, procedures such as method
of timing and cube concealing, time given for cube inspection, strength of playing
field, results in previous rounds, and initial cube scrambles are assumed to have no
significant effect on a cuber’s performance. Moreover, many of these variances are
extremely subtle and are essentially standardized.

(3) Assumption: The evaluation of cubing greatness begins in 2003, and continues to
the present day. All competition results are taken from the World Cube Association’s
player database. [3]

Justification: The first documented cubing competitions occurred in 1982. How-
ever, the World Cube Association, the central regulating body of cubing competitions,
held their first world championship in 2003, when competitions began to occur more
regularly and grow in popularity [1]. Thus, we assumed 2003 to be the first year in
which the results of cubers are eligible for analysis. Because we considered the greatest
of all time, we included results leading up to the present day, but not projected results.

(4) Assumption: For all cubers, only the final rounds of competitions are considered.
Furthermore, each time of competition is simplified to the year of its occurrence.

Justification: Since 2003, all final rounds of WCA competitions have used a
regulated method of calculating scores: each cuber solves 5 Rubik’s cubes, their fastest
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and slowest times are taken out, and the remaining three are averaged. Furthermore,
the final rounds of tournaments exert a level of pressure from spectators and strong
playing fields which is necessary to determine the greatest cuber of all time [4].
Although the WCA records the specific dates of competitions, the competitions are
easily organized by year in the interest of constructing an effective model. Unlike
women’s singles tennis, the top cubers do not all participate in the same tournaments,
which necessitated this assumption.

4.2. Variables.
The Greatness Score (gc) for person c is determined by how well a person performs
in competition and their world records. The following variables help in determining the
competition score:

(1) Average Time For Person c In Year i (µc,i) The average solving time for person
c in year i is denoted by µc,i. This is the average of all their final round averages
throughout year i of competition.

(2) Set of Average Times For Person c (µc The set of average times for person c across
all years active is denoted by µc. In other words, µc = {µc,i| person c competed in year i}.

(3) Yearly Competition Score (ωc,i) This is the competition score of person c in year
i. This is based on the person’s competition times with respect to everyone else’s
times that year.

(4) Competition Score (ωc) This is the competition score of person c over all years. It
is the weighted average of all ωc,i.

(5) People Active (pi) This is the number of top level people active in year i.
(6) Yearly Z-Score (Zc,i) This is the z-score of µc,i over all averages for people in year i.

The following variables help in determining the record score:
(1) Record Score (Rc) This measures how significantly person c has contributed to

world records.
(2) Record value (v) This measures the value of a single record.
(3) Record Improvement (r) This is the ratio of the new record over the previous

record.
(4) Record Duration (t) This is the time for which the record was held in days.

4.3. Development of Model.
The first step was to comb the set of cubers to just a set that would be feasible to be

all-time G.O.A.Ts of the sport, in order to keep the data manageable. As stated in the
assumptions, we only work with the years 2003 and after. By examining world record holders
and frequent appearers in the WCA World Championships, we selected a set of 36 cubers
who competed from 2003 onwards, all of whom had a decent shot at being named the G.O.A.T.

Then, we collected the raw data for the model. Even with just 36 cubers, it would be too
much to record all solve times from all rounds of all competitions they have participated in.
Thus, for each competition one of the competitors reached the finals in, the average solve
time and year was required. Only the finals were collected since they are high-stakes events
and the finals are very standardized: the average of 5 3x3x3 solves are taken for the final
average solve time in the finals of that tournament.
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After all the data from final rounds was gathered, it was compressed several times. Each

final round for each competitor consists of 5 separate solves, which were all averaged to get
one number for each competitor’s final round in each year. Then, all averages for a competitor
were averaged to get a single number to represent each competitor in each year. As stated in
the variables section, this average time in year i for person c is µc,i. In addition to the set of µ
variables, we keep track of pi for each year i, the number of competitors competing in year i.

After this, we calculate the competition score for each person in each year:

ωc,i = Zc,i log(pi)

This is the competition score for person c in year i, where pi is as described above and
Zc,i is the z-score of µc,i with respect to the set µi. The z-score measures how far above
or below person c is compared to the average time in year i, enabling us to determine how
that person is doing compared to the average of their year. Multiplying by log(pi) takes into
account the fact that some years are more competitive than others, so being above the mean
in a more competitive year is worth more than being above the mean in a less competitive year.

A higher ω score in a certain year corresponds to that player being better in comparison
to the rest of the players in that year. When determining the G.O.A.T., we want to take into
acount the standards of the time they were competing, which is why we use ω scores as our
initial measurement of greatness.

It then remains to combine the ω scores for a single person over the years of their career.
This is done through a weighted average. Specifically, the peak year of person c’s career is
found by taking the year i with the maximum ωc,i for that person. Then, all ωc,j scores for

person c are summed, with a year j weighted with a weight of e−
|j−i|2
100 , a normal distribution

based on the number of years away from the peak. This makes it so that years close to
the peak are weighted heavily and years farther from the peak are weighted less heavily. A
weighted average of all ωc,j scores is taken with those weights to get an overall ωc score for
that person.

Then, the world records are taken into account. We define the value, v, of a certain record
to be

v =
t

5 · 365
(
1

r
(1 + 0.01 · pi)− 1)

We use 1
r
since the lower the ratio of the new record over the previous record, the higher

we want the value to be. We also add in the (1 + 0.01 · pi) factor since when more people
participate, it is harder to hold world records and record holders get more attention. Both
these factors generally give values slightly above 1, so subtracting 1, we get a small value
above 0. Lastly, we multiply by a factor of t

5·365 to signify that records held for longer are
worth more. The constant of 1

5
was chosen experimentally to match our desired effect of the

value. The value generally is a small number above 0.

Next, we define the the record factor of a person to be
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Rc = 1 +
∑

v

summing over all records held by person c.

Finally, we calculate the greatness scores of each person to be

gc = wcRc

combining their competition score and record factor. The scores were then scaled linearly
so that the highest score scaled to 100 and the lowest score scaled to 0.

4.4. Results and Discussion.
The results showed that the G.O.A.T. of 3 by 3 by 3 Speedcubing, as determined by their

competition times and records, is Felix Zemdegs of Australia by a large margin, with a scaled
greatness score g = 100.000. Max Park, the second greatest is far behind with a greatness
score of g = 61.268. The model is clearly justified in this decision, as Zemdegs has repeatedly
gets dominating times in competition over many years, he has held 23 records overall in
average times and single times, and is often considered to be the greatest Speedcuber in the
Speedcubing community.

The results also show the trends with how the time a player peaked affected their greatness
score. In general, players who peaked later had a higher greatness score. This makes sense
as more people were involved in Speedcubing over time, and in our model, we placed more
importance on accomplishments when the sport was more popular.

Figures 3 and 4 show the top 15 and 16th to 36th ranked 3x3 speedcubers, respectively.

4.5. Additional Analysis of the Model.
If we disregard world records, we found that Zemdegs was still in the lead, however his

lead was much less dominating with Max Park scoring 86.224. This shows that the records
helped boost Zemdegs’ score greatly in comparison to other competitors.

5. Adaptations for Individual Sports

As we desire to adapt our model for any individual sport, we begin with the consideration
of all of the different types of individual sports. We rigidly define the categorical distinctions
for individual sports as being physical versus non-physical and one-on-one versus with an
inanimate standard, thus creating a total of 4 possible categories for any individual sport,
shown in Figure 5. They are:

• Physical individual sport with an inanimate standard
• Nonphysical Individual Sport with an Inanimate Standard
• Physical One-on-One Individual Sport
• Nonphysical One-on-One Individual Sport
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Figure 3. The top 15 players had greatness score ranges from 100.000 to
92.422 to 40.594. Red represents peak years 2003-2009, yellow represents peak
years 2010-2015, and blue represents players with peak years 2016-2021.

5.1. Adaptations for Individual Sports with an Inanimate Standard.
Similar to our model for Speedcubing, the model for any individual sport must first de-

termine a pool of competitors that are in contention for G.O.A.T. status. As Speedcubing
is a very new sport, our best method of narrowing down this candidate list was looking at
World Championship appearances and world records. For sports with longer histories and
establishments (such as Halls of Fame, All-Stars, etc.), there are more options available for
determining potential greats. In order of importance, our proposed criteria for narrowing
down competitors goes as follows:

(1) Outstanding Recognition: Many established leagues for sports have created, in
some form, an establishment to recognize the greatest retired competitors of their
sport. Most often, this is known as the Hall of Fame, the clearest indication of
greatness of past players. Our adapted model will add any players in a Hall of Fame
to the contention pool.

(2) Outstanding Accomplishments: The next consideration for potential candidates
comes in the form of outstanding accomplishments, which are loosely defined as
victories in major competitions, scores/times/etc. that broke local or world records, or
qualifications for major competitions or tournaments. Since current or newly retired
competitors will not be in the Hall of Fame for their sport, this criteria is meant to
filter out those players.
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Figure 4. The remaining players had greatness score ranges from 40.549
to 0.000. Red represents peak years 2003-2009, yellow represents peak years
2010-2015, and blue represents players with peak years 2016-2021.

Figure 5. A simple tree distinguishing the types of sports that can be inter-
preted by models.

(3) Outstanding Statistics: Lastly, it is worth considering competitors with career
statistics that place them near the top of all players. These players are incredibly
skilled, but perhaps missed out on championships or Hall of Fame recognition for
whatever reason. To determine statistics suitable for this distinction a sport will
be divided into eras based on the changing nature of the sport. For example, the
introduction of new training methods, technologies, improvements in science, etc.
could increase the performance and statistics of players over time. Comparing players
relative to their time period will ensure a fairness.
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From here, comparison factor(s) for the standard of comparison must be developed. It is

important to choose factors that capture the essence of what defines the sport and what makes
it competitive. For example, in model 2a the comparison factor is the average solve times by
year among candidates, since the standard of comparison for speedcubing is solve time. Any
variables that most closely represent score, time, or any other standard of comparison should
be turned into a comparison factor, with averaging or any other method of representing the
pool of competitors holistically. Examples are:

(1) Track and Field For a sport like Track and Field the inanimate standard is the
time it takes each competitor to complete their race. So, a comparison factor would
be the average times of each race.

(2) Gymnastics In gymnastics, players are given scores based on the difficulty of their
routines and the execution of their routines. Comparison factors could be average
difficulty scores and average execution scores, or combined score. [2]

It is possible that the sport can vary significantly in different locations (for example,
varying rules by country), so adjustments can be made to either make the standard constant
throughout, or the testing pool can be divided by region. Note that this variance must be
small enough to consider all activities the same sport. The Speedcubing model will be adapted
to compare player’s statistics (such as time, scores, etc.) with one or more comparison
factors, generating the competition scores.

The model will use the same normal distribution curve to model improvement and decline
past a player’s peak for any nonphysical sport. We can use different constant for both the
improvement and decline curve depending on the nature of the sport. For a physical sport,
the athlete’s body will inhibit their performance past a certain age, based on the sport. So,
for each sport, the average time period of players’ peaks can be taken, and then a curve can
be modeled around the player’s peak and the sport’s duration of peak. With the curve and
competition scores, a weighted average can be taken for the player’s career over the years to
determine his overall competition score, using weights according to the curve and scaled to
sum to 1.

While the Speedcubing model accounts for world records for singles and averages in a
separate score, this kind of additional greatness factor can be adapted into a more general
structure, referred to as an “Impulse of Greatness.” While a competitor with great competi-
tiveness and success in their sport will be considered good, a player needs defining moments,
impulses of greatness, to be considered great or even the G.O.A.T. Thus, impulses of greatness
act to separate the very good players from the players worth considering for the G.O.A.T. In
adapting the model there would be the option to add multiple types of these impulses.

A sample list of types of impulses follow, with descriptions on how they are set up:

(1) Records: Either world, regional collegiate, etc., records highlight the best measure-
ment of scores, times, etc. ever recorded. Holding a record for an individual sport is
a high achievement, and thus every instance of breaking a record will increase the
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Greatness Score. Similar to the speedcubing model, these records will be evaluated
for their duration of being held, their improvement on previous records, and will be
kept in the context of their era of the sport.

(2) Near-records and Great Performances: While these achievements will not be
rated as highly as those that broke records, near-records and outstanding personal
bests still add to a player’s greatness, especially when consistently produced.

(3) Great Victories: A defining moment for a competitor could be a victory against
all odds. A great victory is defined as a victory that was unexpected, based on the
player’s statistics and expectations.

These Impulses of Greatness must all be chosen, quantified, and compared objectively and
based on data, meaning that they are not chosen by popularity (a memorable, funny, or cool
moment is not immediately an Impulse of Greatness, but oftentimes Impulses of Greatness
can have these qualities). Choosing the Impulses of Greatness can be done by choosing a
threshold on the degree of greatness of every any moment that could qualify as one. All
records, should be considered, but near-records should come within a certain degree of a
record. Great victories can be quantified by observing the probability of the player winning
and converting it into a score.

So, a final greatness score can be calculated by multiplying all weighted competition scores
and impulses of greatness, which will determine the G.O.A.T. of any individual sport with
an inanimate standard.

5.2. Adaptations for One-on-One Individual Sports.

To model a one-on-one individual sport, elements from both the Women’s Tennis model
and Speedcubing model can be used and adapted. Since the Tennis model only accounts
for one year of competition over 4 major tournaments, the model can be improved to span
the entire history of the sport, which has been addressed in the Speedcubing model and the
adapted model for any individual sport with an inanimate standard. The model follows this
general structure:

(1) Gathering Potential Greats: This process will be exactly the same as the steps
outlines for pooling players previously.

(2) Gathering Matches to Analyze: It is essential that the model samples data of
player’s wins, losses, scores, etc. from a standardized pool of matches. Most often
this will consist of matches played under the most prominent league(s) for the sport.
For example, the most prominent source of professional tennis matches is the ATP
tour [5]. Data must be sourced that contains, at minimum, match results and scores.

(3) Establishing Time Periods: The model will observe how trends change over time
and will relatively compare players across eras. The default time period of comparison
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is set at 1 year.

(4) Calculating Yearly Greatness Scores: For each candidate, a yearly greatness
score will be calculated with the model for Women’s Tennis, using the data collected
on matches. Each player will have a collection of competition scores for each year (or
determined time period) that they compete.

(5) Elevation and Degradation Curve to Compensate for Improvement and
Decline: Exactly like the model for individual sports with a inanimate standard,
this model will account for improvement and decline around a peak, accounting for
the boolean physically of the sport.

(6) Impulses of Greatness: The Impulses of Greatness will be applied on to the
weighted average of competition scores. Examples for One-on-One Impulses of Great-
ness are great victories, records, and outstanding winning streaks.

(7) Final Calculations: So, similar to the Speedcubing model, the calculation of the
Greatness Score is taken as the product of the competition score and each Impulse of
Greatness.

6. Adaptations for Team Sports

To account for team sports, we devised a list of what makes a great team player:

(1) Great Individual Performance: The G.O.A.T. of team sports must be an out-
standing player, with respect to other players of their position. To model this,
we would use our model for individual sports with an inanimate standard, and
set the standard (comparison factors) as the average statistics of all potentially great
players in each position. We also can factor in any world records held by individual
players. For example, a goalkeeper will be given an individual score with respect to
all other goalkeepers in the pool of players. It is important to make this positional
distinction since the role of position players and their subsequent statistics varies
widely within many sports. For a sport without positions, all players will be compared
with respect to universal standards, for obvious reasons.

(2) Great Team Performance: The greatness of a player’s team is another consid-
eration for that individual’s greatness. Though it is possible, it is highly unlikely
that a player on poorly-performing teams can be considered an all-time great, so our
model reflects that. In the case that the two teams compete against each other, a
model similar to the model for one-on-one individual sports, with the multi-year
consideration of peak, improvement, and decline. Then, as a weighted average, the
competition score of the team during the player’s time on it is calculated. In the case
of more than two teams competing, the variables would be adjusted to account for
placement, rather than wins and losses (i.e. placing second out of 5 teams). Note that
players on the same team will only have the same team competition score if all of
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their years on the team are the same.

(3) Value of Player: In a team sport, another consideration is the value of the player to
the team. How does the team perform with and without the player, and how would
their success greatness change in the absence of the player? There are two scenarios
to analyze in order to determine the value of player: (1) The comparative greatness of
a team with and without the player during the player’s time on the team, and
(2) the comparative greatness of the team if the player was replaced with an average
player on the team.

The first scenario is based on the pool of games of the team during the player’s
time can be divided based on whether or not the player competed in the games. Then,
two team greatness scores can be taken over the two pools of games, and the dif-
ference between the two can be taken and converted into the first player value subscore.

To simulate the second scenario, the major yearly statistics of the player can be
gathered, as well as team averages for those statistics discluding the player (team
averages are done positionally if applicable). Examples of these statistics could be:
Points per Game for Basketball, Runs Batted in for Baseball, Kills / Digs for Vol-
leyball, etc. Then, the player is replaced on the team with another player in their
position that has statistics equal to the team averages. With those changes to major
statistics, the scores of every match in the model can be roughly changed based on
the absence of the player, and the new greatness score can be generated. Then, by
analyzing the difference between the new and old greatness scores, a second player
value subscore can be generated.

So, with the combination of the individual greatness score, the competition score of the
team, and the player value score taken by multiplying the subscores, the model can output a
final greatness score of each player, and determine the G.O.A.T. of any team sport.
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7. Letter to the Director of Top Sport

To the Director of Top Sport:

We are excited to announce the development of comprehensive models for women’s singles
tennis and 3x3x3 speedcubing which can be universally adapted to fit all individual and team
sports. All models are tailored to return a definitive greatness score between 0 and 100 for
any individual athlete relative to their opponents, regardless of sport played. By broadening
or narrowing the scope of our players or the time, it is possible to determine the greatness of
players in any geographical region, division of sport, or time period.

Our first model examines women’s singles tennis in the year 2018, determining the relative
greatness for all participants in the Grand Slam tournaments held that year. Each individual
match was analyzed, with a domination score derived from the game score reflective of the
players’ performance. Matches were also weighted differently based on the round they were
played in and the relative strengths of the two opponents. At the end of the match, the
two opponents’ greatness scores were increased by a total reflective of their performance in
the match. We ran 1000 iterations of the four 127-game tournaments to obtain a definitive
ranking of all 189 participants. Our model found the greatest women’s singles tennis player
in 2018 to be Simona Halep, which is clearly justified with her first Grand Slam Title at
the French Open, Player of the Year Award by the WTA, and her ranking as first in the
world. The model outputted Angelique Kerber, Naomi Osaka, Caroline Wozniacki, and
Serena Williams to round out an impressive top 5.

In our second model, we decided to think outside the cube, and sought to find the greatest
3x3x3 Rubik’s cube solver of all time. For an eccentric sport not dissimilar to sprinting, we
solicited a pool of 36 world championship finalists and world record holders across the history
of cubing. We compiled detailed records of their tournament results over their careers as well
as their prestigious world record reigns, comparing performance with the saturation of the
playing field for every year. After implementing a system to selectively emphasize a cuber’s
best years, we factored in extraordinary solves and world records to each individual’s greatness
scores over their career. In the end, the model returned the legendary Feliks Zemdegs as the
undisputed G.O.A.T. of speedcubing (by quite a significant margin), followed by Max Park
and Mats Valk.

The two models are based on principles common to many sports. Our tennis model can
serve as a framework for any matchup-dependent individual sport, from boxing to bowling to
badminton. Our speedcubing model can be adapted to any sport with an inanimate standard:
triathlon, golf, weightlifting, ski jumping, and skeleton among these. What is perhaps most
beautiful is the combination of these two to form a model for the greatness of individuals in
team sports. Taking advantage of the solo greatness evaluated in the second model and the
matchup greatness evaluated in the first model, individual and team performance and player
value can build on a foundation, able to model field hockey, football, Fortnite and more.

Taken together, we believe our models of tennis and speedcubing to be very accurate and
effective in calculating performance-based greatness, and would be eager to apply them to
the great world of all sports.

Best regards,
Team US-10656



IMMC US-10656, Page 21 of 33
References

[1] Competitions: World cube association. [Online]. Available from: https://www.worldcubeassociation.
org/competitions.

[2] Events. [Online]. Available from: https://usagym.org/pages/events/pages/fig_scoring.
html#:~:text=Score%20for%20each%20gymnast%20is,routine%20minus%20deductions%20for%
20execution.

[3] Persons: World cube association. [Online]. Available from: https://www.worldcubeassociation.org/
persons.

[4] Wca regulations. [Online]. Available from: https://www.worldcubeassociation.org/regulations.
[5] Alison Baker. 8 best major tennis tournaments - the most prestigious tennis tournaments.

[Online]. Available from: https://www.roadtrips.com/blog/8-best-major-tennis-tournaments/
#What_are_the_Major_Tennis_Tournaments, Oct 2020.

[6] Press Release. Wta announces revised wta ranking system. [Online]. Available from: https://www.
wtatennis.com/news/1717831/wta-announces-revised-wta-ranking-system, Jul 2020.

[7] Wikipedia. 2018 us open (tennis). [Online]. Available from: https://en.wikipedia.org/wiki/2018_
US_Open_(tennis), Dec 2020.

[8] Wikipedia. 2018 australian open. [Online]. Available from: https://en.wikipedia.org/wiki/2018_
Australian_Open, Jan 2021.

[9] Wikipedia. 2018 french open. [Online]. Available from: https://en.wikipedia.org/wiki/2018_
French_Open, Jan 2021.

[10] Wikipedia. 2018 wimbledon championships. [Online]. Available from: https://en.wikipedia.org/
wiki/2018_Wimbledon_Championships, Jan 2021.

8. Appendices

8.1. Appendix A. Greatness of Women’s Singles Tennis Players, 2018.

https://www.worldcubeassociation.org/competitions
https://www.worldcubeassociation.org/competitions
https://usagym.org/pages/events/pages/fig_scoring.html#:~:text=Score%20for%20each%20gymnast%20is,routine%20minus%20deductions%20for%20execution.
https://usagym.org/pages/events/pages/fig_scoring.html#:~:text=Score%20for%20each%20gymnast%20is,routine%20minus%20deductions%20for%20execution.
https://usagym.org/pages/events/pages/fig_scoring.html#:~:text=Score%20for%20each%20gymnast%20is,routine%20minus%20deductions%20for%20execution.
https://www.worldcubeassociation.org/persons
https://www.worldcubeassociation.org/persons
https://www.worldcubeassociation.org/regulations
https://www.roadtrips.com/blog/8-best-major-tennis-tournaments/#What_are_the_Major_Tennis_Tournaments
https://www.roadtrips.com/blog/8-best-major-tennis-tournaments/#What_are_the_Major_Tennis_Tournaments
https://www.wtatennis.com/news/1717831/wta-announces-revised-wta-ranking-system
https://www.wtatennis.com/news/1717831/wta-announces-revised-wta-ranking-system
https://en.wikipedia.org/wiki/2018_US_Open_(tennis)
https://en.wikipedia.org/wiki/2018_US_Open_(tennis)
https://en.wikipedia.org/wiki/2018_Australian_Open
https://en.wikipedia.org/wiki/2018_Australian_Open
https://en.wikipedia.org/wiki/2018_French_Open
https://en.wikipedia.org/wiki/2018_French_Open
https://en.wikipedia.org/wiki/2018_Wimbledon_Championships
https://en.wikipedia.org/wiki/2018_Wimbledon_Championships


IMMC US-10656, Page 22 of 33



IMMC US-10656, Page 23 of 33



IMMC US-10656, Page 24 of 33



IMMC US-10656, Page 25 of 33
8.2. Appendix B. Additional Chart of Women’s Singles Tennis Players, 2018.

Figure 6. The remaining players had greatness score ranges from 54.342
to 0.000. Green represents players who participated in four Grand Slam
tournaments. Blue represents players who participated in three, yellow for two,
red for one.
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8.3. Appendix C. Python Code for Women’s Singles Tennis Model.

import csv
import random

f i l e s = [ ’ Al l Tennis Games − Aust ra l i an Open . csv ’ ,
’ A l l Tennis Games − French Open . csv ’ ,
’ A l l Tennis Games − US Open . csv ’ ,
’ A l l Tennis Games − Wimbledon . csv ’ ]

#i n t e r p r e t s the sp r eadshee t s i n to a l i s t o f games
de f gameList ( f i l e s ) :

games = [ ]
f o r f i l e in f i l e s :

da ta_f i l e = open ( f i l e , ’ r ’ )
data = [ l i n e f o r l i n e in csv . r eader ( da ta_f i l e ) ]
data . pop (0 )
whi l e l en ( data ) > 0 :

data . pop (0 )
p1 = data . pop (0 )
p2 = data . pop (0 )
i f ’ r ’ in p1 or ’ r ’ in p2 or ’w/o ’ in p1 or ’w/o ’ in p2 :

cont inue
i f ( i n t ( p1 [ 3 ] ) < in t ( p2 [ 3 ] ) and i n t ( p1 [ 5 ] ) < in t ( p2 [ 5 ] ) ) or

( not ( i n t ( p1 [ 3 ] ) > in t ( p2 [ 3 ] ) and i n t ( p1 [ 5 ] ) > in t ( p2 [ 5 ] ) )
and ( i n t ( p1 [ 7 ] ) < in t ( p2 [ 7 ] ) ) ) :

p1 , p2 = p2 , p1
game = [ ]
game . append ( [ p1 [ 2 ] , p2 [ 2 ] ] )
s c o r e = [ [ i n t ( p1 [ 3 ] ) , i n t ( p2 [ 3 ] ) ] , [ i n t ( p1 [ 5 ] ) , i n t ( p2 [ 5 ] ) ] ]
i f p1 [ 7 ] != ’ ’ :

s c o r e . append ( [ i n t ( p1 [ 7 ] ) , i n t ( p2 [ 7 ] ) ] )
i f p1 [ 4 ] != ’ ’ :

s c o r e [ 0 ] . append ( [ i n t ( p1 [ 4 ] ) , i n t ( p2 [ 4 ] ) ] )
i f p1 [ 6 ] != ’ ’ :

s c o r e [ 1 ] . append ( [ i n t ( p1 [ 6 ] ) , i n t ( p2 [ 6 ] ) ] )
i f p1 [ 8 ] != ’ ’ :

s c o r e [ 2 ] . append ( [ i n t ( p1 [ 8 ] ) , i n t ( p2 [ 8 ] ) ] )

game . append ( s co r e )
game . append ( i n t ( p1 [ 1 ] ) )
game . append ( f i l e )
games . append (game)
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re turn games

games = gameList ( f i l e s )

i n i t i a l = 0 .0
baseGain = 5
base = 5
logConst = 50
roundConsts = [ 1 . 2 ∗ ∗ i f o r i in range ( 7 ) ]

#c a l c u l a t e s the domination s co r e based on the s co r e o f the match
de f domScore ( s co r e ) :

sum = 0.0
f o r s co r in s co r e :

t i eFac t o r = 1
i f s co r [ 0 ] + sco r [ 1 ] == 13 :

t i eFac t o r = (0 . 9889 ) ∗∗ min ( s co r [ 2 ] [ 0 ] + sco r [ 2 ] [ 1 ] −7 , 2 0 ) / 0 . 8
i f s co r [ 0 ] < sco r [ 1 ] :

sum −= (0 . 8 ) ∗ ∗ ( s co r [0 ]+ sco r [1 ] −6)∗ t i eFac t o r
e l s e :

sum += (0 . 8 ) ∗ ∗ ( s co r [0 ]+ sco r [1 ] −6)∗ t i eFac t o r

re turn 1.5− (0.5/(1 −.3∗∗3))∗(1 −(0.3)∗∗(2 −sum) )

r a t i n g s = {}
f o r game in games :

r a t i n g s [ game [ 0 ] [ 0 ] ] = i n i t i a l
r a t i n g s [ game [ 0 ] [ 1 ] ] = i n i t i a l

#puts the l i s t o f games through the r a t i ng system
def update ( games ) :

f o r game in games :
r1 = ra t i n g s [ game [ 0 ] [ 0 ] ]
r2 = ra t i n g s [ game [ 0 ] [ 1 ] ]
t ry :

r a t i n g s [ game [ 0 ] [ 0 ] ] += baseGain ∗
(1 − 1/(1+base ∗∗ ( ( r2−r1 )/ logConst ) ) ) /
domScore (game [ 1 ] ) ∗ roundConsts [ game [ 2 ] ]

r a t i n g s [ game [ 0 ] [ 1 ] ] −= baseGain ∗
(1 / (1 + base ∗∗ ( ( r1 − r2 ) / logConst ) ) )
/ domScore (game [ 1 ] ) / roundConsts [ game [ 2 ] ]

except :
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p r i n t ( r1 , r2 )

#runs through the games 1000 t imes
f o r i in range ( 1000 ) :

random . s h u f f l e ( games )
update ( games )

comps = {}
f o r game in games :

i f game [ 0 ] [ 0 ] not in comps . keys ( ) :
comps [ game [ 0 ] [ 0 ] ] = s e t ( )

i f game [ 0 ] [ 1 ] not in comps . keys ( ) :
comps [ game [ 0 ] [ 1 ] ] = s e t ( )

comps [ game [ 0 ] [ 0 ] ] . add (game [ 3 ] )
comps [ game [ 0 ] [ 1 ] ] . add (game [ 3 ] )

#dec r ea s e s s co r e i f missed more than 1 tournament
f o r key in r a t i n g s . keys ( ) :

r a t i n g s [ key ] ∗= 0.8∗∗max(0 ,3− len ( comps [ key ] ) )

names = ra t i n g s . keys ( )
s c o r e s = [ r a t i n g s [ name ] f o r name in names ]

z i pp ed_ l i s t s = z ip ( s co re s , names )
sor ted_pa i r s = so r t ed ( z i pped_ l i s t s )

tup l e s = z ip (∗ sor ted_pa i r s )
s co re s , names = [ l i s t ( tup l e ) f o r tup l e in tup l e s ]

names . r e v e r s e ( )
s c o r e s . r e v e r s e ( )

s c a l ed = [100∗ ( score−s c o r e s [ −1] )/( s c o r e s [0] − s c o r e s [ −1]) f o r s co r e in s c o r e s ]

#p r i n t s the so r t ed names and s c o r e s
f o r i in range ( l en ( names ) ) :

p r i n t ( names [ i ] + " , " + s t r ( s c a l ed [ i ] ) + " , " +
s t r ( l en ( comps [ names [ i ] ] ) ) )
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8.4. Appendix D. Greatness of Speedcubers.
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8.5. Appendix E. Competition Scores of Cubers, Visualized.

Figure 7. Our Speedcubing Model determined that Feliks Zemdegs is the
G.O.A.T. by a significant margin. Visualized are his competition scores over
the years, with the yellow column signifying his peak year, and blue and red
representing positive and negative competition scores respectively.

Figure 8. Our Speedcubing Model determined that Lars Vanderberg was the
worst out of our pool of 36 cubers. Visualized are his competition scores over
the years, with the yellow column signifying his peak year, and blue and red
representing positive and negative competition scores respectively.
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Figure 9. Our Speedcubing Model placed Tomasz Zolnowski in the middle of
our pool of 36 cubers, at rank 18. Visualized are his competition scores over
the years, with the yellow column signifying his peak year, and blue and red
representing positive and negative competition scores respectively.

8.6. Appendix F. Python Code for Speedcubing Model.

import csv
import math
import numpy

data = [ l i n e f o r l i n e in csv . r eader (
open ("Model 2_ Speed Cubing − Stat s 2 . csv " , ’ r ’ ) ) ]

data . pop (0 )

r a t i n g s = {}
peaks = {}
numperyear = {}

person = ""
sum = 1.0
wsum = 1.0

#computes compet i t ion s co r e f o r each person
whi le True :

row = data . pop (0 )
i f row [ 6 ] != ’ ’ :

numperyear [ i n t ( row [ 6 ] ) ] = in t ( row [ 1 0 ] )
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i f person != row [ 1 1 ] :

r a t i n g s [ person ] = sum/wsum
i f row [ 1 1 ] == ’ ’ :

break
person = row [ 1 1 ]
sum = 0.0
wsum = 0.0

peaks [ row [ 1 1 ] ] = in t ( row [ 2 3 ] )
sum += f l o a t ( row [ 1 3 ] ) ∗ math . e ∗∗

(−( i n t ( row [ 1 2 ] ) − in t ( row [ 2 3 ] ) ) ∗ ∗2/100 )
wsum += math . e ∗∗ (−( i n t ( row [ 1 2 ] ) − in t ( row [ 2 3 ] ) ) ∗ ∗2/100 )

de l r a t i n g s [ " " ]

data = [ l i n e f o r l i n e in csv . r eader (
open ("Model 2_ Speed Cubing − Stat s 3 . csv " , ’ r ’ ) ) ]

data . pop (0 )

record = {}
f o r key in r a t i n g s . keys ( ) :

r ecord [ key ] = 1

#computes record s co r e f o r each person
whi le True :

row = data . pop (0 )
i f row [ 0 ] == ’ ’ and row [ 1 4 ] == ’ ’ :

break
i f row [ 0 ] != ’ ’ :

r ecord [ row [ 0 ] ] += ( ( ( 1 . 0 / f l o a t ( row [ 5 ] ) ) ∗
(1+0.01∗ numperyear [ i n t ( row [ 1 ] [ − 4 : ] ) ] ) ) − 1) ∗
f l o a t ( row [ 4 ] ) / 3 6 5 . 0 / 5

i f row [ 1 4 ] != ’ ’ :
r ecord [ row [ 1 4 ] ] += ( ( ( 1 . 0 / f l o a t ( row [ 1 8 ] ) ) ∗

(1 + 0.01 ∗ numperyear [ i n t ( row [ 1 3 ] [ − 4 : ] ) ] ) ) − 1)∗
f l o a t ( row [ 1 7 ] ) / 365.0/5

#combines the compet i t ion and record s co r e
f o r key in r a t i n g s . keys ( ) :

r a t i n g s [ key ] ∗= record [ key ]

people = r a t i n g s . keys ( )
s c o r e s = [ r a t i n g s [ person ] f o r person in people ]
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z i pp ed_ l i s t s = z ip ( s co re s , people )
sor ted_pa i r s = so r t ed ( z i pped_ l i s t s )

tup l e s = z ip (∗ sor ted_pa i r s )
s co re s , people = [ l i s t ( tup l e ) f o r tup l e in tup l e s ]

people . r e v e r s e ( )
s c o r e s . r e v e r s e ( )
s c a l ed = [100∗ ( score−s c o r e s [ −1] )/( s c o r e s [0] − s c o r e s [ −1]) f o r s co r e in s c o r e s ]

#p r i n t s so r t ed names , s co re s , and peak years
f o r i in range ( l en ( people ) ) :

p r i n t ( people [ i ] + " , " + s t r ( s c a l ed [ i ] ) + " , " + s t r ( peaks [ people [ i ] ] ) )
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